
The importance of the QoE
‘CAP’ – Correlation with
Accuracy and Precision

The share of the population subscribing to streaming services
continues to grow worldwide. As of August 2020, 62% of adults in the
US region had a subscription to a streaming service. In countries like
India, the growth rate is quite substantial – the OTT subscriber base
in India grew by a whopping 30% between March and July 2020
alone.

https://www.statista.com/topics/1594/streaming/
https://www.financialexpress.com/brandwagon/2020-rise-of-paid-subscribers/2172942/#:~:text=According%20to%20India%20Brand%20Equity,March%20and%20July%202020%20alone.

Ensuring a better user experience has become one of every
service provider’s primary objectives to attract and retain
subscribers. There has been a realization among providers
that it is not enough to be content-rich.

User Experience (UE) gets bifurcated into User Experience
and Quality of Experience (QoE) for an OTT application.
Going by the definition of Quality of Experience, it is a
holistic concept that must encapsulate all service aspects. It
is a user’s degree of delight or dissatisfaction with the entire
service.

Any attempt to measure and analyze QoE has to ensure that
every facet of the video delivery is considered. The end-to-
end video delivery workflow has many moving parts,
starting from content sources, encoder, DRM, packager,
CDNs, and various platforms (plus the apps, players) over
which the video is finally consumed. From an empirical
standpoint, one can relate this to measuring KPIs from the
network, player, video playback, and application [or
firmware] itself. Video start-up times, buffering occurrences,
frozen video, and the player’s ability to catch up to the
highest quality are some of the well-known areas of
measurements.

Measurement of these KPIs alone may not help streaming
or app teams make the best decisions on improving
streaming quality. To start with, the measurements need to
be as precise and accurate as possible. Proper aggregation
and correlation techniques combined with an easy-to-
understand visualization are equally important.

2

The whole gambit of QoE assessment is created around the end
device. QA teams often see NFR testing as a sub-category of tests that
may take less priority than the heavier & bigger functional test case
list. For example, the number of functional tests for an OTT app can be
in the range of 3000; however, the number of NFR test cases may very
well be less than 100. Owing to this, QA teams may end up taking a
reactive approach to NFR testing. This can often lead to testers
devising manual ways of measuring app performance, video start-
times, detecting occurrences of buffering, and so on. Some companies
may not even consider these as part of their test coverage.

Manual assessment of NFR later gets shifted to semi-automated ways.
However, the entire process of testing can be monotonous and time-
consuming. Above all, the tests by themselves will not show the
connection between different layers of KPIs, let alone show any
correlations at all, for example, correlating the player’s behavior at a
given instance in time to a spontaneous network issue. It won’t be easy
to measure a KPI like video start-up time against varying throughput
levels available to the application, using manual or semi-automated
ways. Measuring a KPI like start-up time against throughput is
essential because it is often affected by last yard challenges. So, the
correlation between the last yard network throughput and start-up
time is critical to point fingers in the right direction instead of blaming
just the CDN.

3

Manual Vs. Automated Measurement
of Video QoE

If an automation tool is to be used for QoE assessment, it should be
a tool that was created with NFR and QoE measuring capabilities as
one of the primary design considerations. Just like automating
functional tests, automating a QoE measurement also requires logic
to be created. This will often consist of navigation of the UI,
searching for content, initiating a playback, and further playback
controls. We can picture this as a list of QoE automation scripts
designed to measure all the KPIs defined.

One may think that this can be done using their test automation tool
itself. Of course, there are test automation solutions that address the
NFR testing. However, most of the APIs in them are atomic and are
designed to measure just the performance scenario and supply the
measurement back to the script. It then becomes the script
developer’s job to ensure that this data is persisted along with other
relevant data points. In other words, a QoE KPI measured as just one
number isn’t useful – it has to be measured along with a set of other
parameters that define the state of the system when the
measurement had taken place. This also means that the same KPI
has to be measured multiple times by altering the parameters that
can potentially affect the KPI. Measuring buffering ratio against
varying Wi-Fi signal strength levels (received at the end device) is one
example.

The ultimate goal of measuring QoE is to enhance it further. To make
this happen, the assessment framework should offer a
comprehensive set of features on the scripting, data acquisition,
aggregation, and visualization layers so that the user (who designs &
writes the logic to measure the KPIs) can focus on precisely that and
not on how to deal with the data returned by an API, how to
aggregate several data points and how to derive meaningful
statistics and reports.

A good automated QoE measurement system offers the user the
proper playground where the QoE data collection has to occur. This
signifies that when the system executes logic to measure, say, video
start-up time, it is also ensured that all the other intrinsic data points
are also collected along. This may include download and upload
rates, network requests and responses, player/app logs, crash-
analytics data, and so on. In other words, the system has to be
aware of the context of measurement. It should automatically be on
the lookout for all data points necessary to triage and decide on
actions to be taken for improvement. This capability is a clear line of
separation between QoE tools built for purpose and NFR capable test
automation tools.

4

The typical NFR APIs in a functional test automation system are often
not designed to ensure the highest levels of precision and accuracy.
Based on our observations, a typical performance API that detects an
application start or the start of a video playback comes with precision
levels in the range of 300-900 milliseconds. As far as accuracy is
concerned, there is always a delta caused by the device control
command latency, such as a tap on a play button. This is usually in the
range of 200 to 500 milliseconds.

These above-mentioned precision and accuracy levels are not good
enough for QoE assessment using an automated system. This is
because the values are not only measured but are also used for
correlation with data collected at high sampling rates. As stated above,
correlation a critical element for improving QoE. There is no point in
sampling network at 100 milliseconds when the video performance
measurement precision is roughly 900 milliseconds. One should be
able to see the exact time gap between the change in bandwidth, the
subsequent adaptation of bit-rates at the player end, and a buffering
that occurred on the screen in between. It will be ideal if the video side
of measurements achieves frame-level precision (about 20mS for
60fps, 40mS for 30 fps video). Player’s adaptation to changing
bandwidth levels and during the start-up is a critical factor in QoE,
more so in bigger and high-resolution screens (TVs) because viewers
can easily spot quality differences between the lower bit-rate streams
vs. the highest bit-rate stream in those screens.

5

Importance of accuracy and precision
of QoE data measurements

Measuring video transitions at a frame level can be a costly operation
for CPU and memory. This is even more so when there is a need to
scale. Every research or project that deals with artifact detection in a
video stream invariably talks about achieving the required levels of
real-time performance. This will remain one of the primary criteria in
deciding whether or not the solution is production-ready and can be
easily scaled.

A video QoE test automation system must detect the following broader
categories at the least –

 Video Transitions & frozen state
 Artifacts such as logos, buffering icons, error icons, any custom/user-defined

ones
 Subjective assessment on the video quality (ABR or even PDL)
 Audio levels & silence, audio distortions & glitches

Techniques used for detection can be categorized into:

On the video:
 Spatial domain techniques (Image pixel-based)
 Compressed domain analysis (Frequency domain & related techniques)
 Deep learning (Convolutions in the spatial domain)
 Combining compressed domain and deep learning

On the audio:
 Temporal (time-based) – audio samples analyzed in real-time
 Frequency domain – audio frames spectrogram’ed for further analysis
 Combining frequency domain and deep learning

6

Approaches and the challenges in
bringing in high precision and accuracy

https://arxiv.org/pdf/1808.10086.pdf

When designing pixel-based algorithms, one needs to be
mindful about pre-empting a computational catastrophe and
provisioning ‘safety valves’ so that these algorithms do not
hog a lot of CPU and memory. It is essential that the
framework drives such analysis with smarter ways of
optimization. This has to start from accepting inputs from the
user. The user’s need will vary from running things at real-
time to achieving maximum accuracy & precision.

Suppose the system simply exposes an artifact detection
algorithm to the user without being empathetic about the
actual need (same algorithm may satisfy different needs). In
that case, it can lead to unnecessary computational
overheads. For example, if the need is to differentiate
between a 6-second start-up vs. an instant start-up, the
algorithm need not be driven at full throttle and at frame
level. The QoE measurement APIs have to offer this kind of
flexibility to the user – essentially a handy set of control
levers to drive them for the exact need.

Compressed domain techniques can turn out to be more
efficient than pixel-based ones. In some cases, like the
subjective quality assessment, they may be the only practical
choice too.

Figure 1: High pass filter yielding edge detection
in the spatial domain

7

https://link.springer.com/article/10.1007/s11042-014-2345-z

8

Figure 2: Fast Fourier Transforms (Frequency domain) done on video
frames of different quality

The above figures are samples taken from the experiments done on
detecting subjective video quality. The first one is done on the spatial
domain. To get useful results, one may have to apply different
masking and preprocessing techniques before doing an edge
calculation to detect quality levels. This type of processing can often
be highly demanding on the CPU, which can degrade the overall
system performance. It is advisable to have limiters or thresholds
defined for preventing over usage of system resources.

The second figure is depicting transformation to the frequency
domain. It shows an FFT output varies for different video quality
levels from 144p up to 1080p (Reference to YouTube’s bit rate
laddering). It will be relatively easy to deduce subjective quality
scores from these compressed domain techniques than just
operating on the spatial domain itself. These types of transforms are
also more ideal for machine learning techniques – the training
datasets confine to a particular kind of pattern than just any possible
video frame out there.

Operators who strive to achieve higher user
experience levels and QoE – the line between these
is blurred – must give a fair share of their attention
to the proactive assessment of QoE KPIs. In
principle, automated ways of assessment are
merited over manual techniques.

Companies trying to narrow down on the test
framework for QoE may want to consider the points
outlined in this document. In other words, the tool
selection shouldn’t be made only based on the
automation capabilities of a testing tool.

9

Conclusion

Author

Sunil TG
Head of Engineering, Automation Products

qoetient@tataelxsi.com

About QoEtient

QoEtient is a QoE improvement platform that can identify
QoE issues before the customers see them. QoEtient
helps develop strategies to improve the QoE proactively.
It acts as a critical quality gate in the software
development process.

https://www.tataelxsi.com/products/broadcast/qoetient

